
Microservizi: runtime, metodi,
pattern ed ultime novità

Ugo Landini - Solution Architect

Giuseppe Bonocore - Solution Architect

#RedHatOSD

“With great power, there
must also come—

great responsibility.”
—SPIDERMAN (STAN LEE)

#RedHatOSD

It is about the Journey

Self-Service,
On-Demand,

Elastic,
Infrastructure

as
Code

(Cloud)

Re-Org to
DevOps

Automation
Puppet, Chef,

Ansible
and/or

Kubernetes

CI & CD
Deployment

Pipeline

Advanced
Deployment
Techniques

Silicon
Valley

DotCom
Startup

Microservices

#RedHatOSD

You Must Be This Tall
1. Self-Service, on-demand, elastic infrastructure as code

(how many days/weeks to provision a new VM?)
2. Dev vs Ops

(who is on the pager for production app outage?)
3. Automation

(phoenix vs snowflake?)
4. CI & CD
5. Deployment Pipeline

http://martinfowler.com/bliki/MicroservicePrerequisites.html
#RedHatOSD

Maturing The Application Lifecycle

Month
0

Month
3

Week
1

Week
2

Week
3

Week
4

Week
5

Week
6

Week
7

Week
8

Week
9

Week
10

Week
11

Monolith Java EE Lifecycle

#RedHatOSD

Maturing The Application Lifecycle

Month
0

Month
3

Week
1

Week
2

Week
3

Week
4

Week
5

Week
6

Week
7

Week
8

Week
9

Week
10

Week
11

Monolith Java EE Lifecycle
Fast Moving Java EE Monolith

#RedHatOSD

Maturing The Application Lifecycle

Month
0

Month
3

Week
1

Week
2

Week
3

Week
4

Week
5

Week
6

Week
7

Week
8

Week
9

Week
10

Week
11

Monolith Lifecycle
Fast Moving Java EE Monolith
Java EE Microservices

8

#RedHatOSD

Why Monolith To Microservices

Break things down (organizations, teams,
IT systems, etc) down into smaller pieces
for greater parallelization and autonomy
and focus on reducing time to value.

#RedHatOSD

What’s the difference?

● Same ideas, new technologies (which will evolve in the
future)

● But now, we should be able to bring a new feature in
production in a few minutes

#RedHatOSD

1. Deployment Independence - updates to an individual
microservice have no negative impact to any other component of
the system. Optimized for Replacement

2. Organized around business capabilities
3. Products not Projects
4. API Focused
5. Smart endpoints and dumb pipes
6. Decentralized Governance
7. Decentralized Data Management
8. Infrastructure Automation (infrastructure as code)
9. Design for failure
10. Evolutionary Design

Microservice Principles/Characteristics

#RedHatOSD

MyService

Monitoring

Tracing

API

Discovery

Invocation

Resilience

Pipeline

Authentication

Logging Elasticity

Microservices'ilities

#RedHatOSD

#RedHatOSD

Microservice Container≅ Container

https://www.flickr.com/photos/63975655@N07/

#RedHatOSD

DOCCHER!

#RedHatOSD

Container (no more) = Docker

LXC Initial
release

Aug
‘08

Mar
‘13

Docker
Initial
release

Jun
‘15

Jul
‘15

CNCF Buildah

Jun
‘17

Moby

Apr
‘17

Aug
‘17

PodMan

Open
Container
Initiative

CRI-O

Sep
‘17

CONFIDENTIAL - FOR INTERNAL USE ONLY

16 CONFIDENTIAL - FOR INTERNAL
USE ONLY

CONFIDENTIAL - FOR INTERNAL USE ONLY

17 CONFIDENTIAL - FOR INTERNAL
USE ONLY

THE CLOUD-NATIVE APP DEV
CHALLENGE

Dev Tool IntegrationConfig and Setup

Source: Cloud Development Survey 2017 - Evans Data Corp

41%
Of enterprises see non-

integrated tools as an inhibitor
to container adoption.

24%
Of time spent building and

maintaining developer
environments.

#RedHatOSD

Modern, cloud-native application runtimes and an opinionated
developer experience for organizations that are moving
beyond 3-tier architectures and embracing cloud-native
application development.

#RedHatOSD

AUTOMATIO
N

INTEGRATIONAPPLICATION RUNTIMES

Red Hat Hybrid Cloud Development Platform

RED HAT ENTERPRISE LINUX ECOSYSTEM
Hardware, Virtualization, Cloud and Service Provider Certifications

APPLICATION SERVICES

SERVICE MESH

ENTERPRISE KUBERNETES

App
Monitoring

Infra
Monitoring

Broker

#RedHatOSD

Openshift Tested Integration

https://access.redhat.com/articles/2176281

● 100+ defects fixed between every upstream
Kubernetes and commercial OpenShift release

● 140+ combinations of common products tested
with every *minor* OpenShift release, incl.
Storage drivers, networking, database images, ...

● Tested for performance & scalability, security
and reliability

#RedHatOSD

https://access.redhat.com/articles/2176281

Ok, so it’s (also) about being lighter?

Don’t believe it? Try it out yourself http://bit.ly/modern-java-runtimes

Runtime
(framework)

Boot time
server only

Boot time including app
deployment

Memory usage
without load

Memory usage
under load

Measured
throughput

JBoss EAP (Java EE) 2 - 3 sec 3 sec 40 MB 200 - 400 MB 23K req/sec

JBoss EAP (Spring) 2 - 3 sec 7 sec 40 MB 500 - 700 MB 9K req/sec

JBoss WS/Tomcat
(Spring)

0 - 1 sec 8 sec 40 MB 0.5 - 1.5 GB 8K req/sec

Fat JAR (Spring Boot) N/A 3 sec 30 MB 0.5 - 2.0 GB 11K req/sec

Fat JAR (Thorntail) 1-2 sec 5 sec 30 MB 250 - 350 MB 27K req/sec

 Theoretically, yes. But, beware:
● A simple ReST service deployed in EAP used ⅕ of the memory

used by Spring Boot under load and was 2x faster!

#RedHatOSD

Selection
Considerati

on
Project Type Framework Pref Learning Effort Deployment Pkg

Runtimes
Cloud
Native
(new)

Cloud Enable (existing) Java EE Non-Java
EE

No Little Invest Thin Fat Hollow

Lift &
Shift

Connec
t &

Enhanc
e

Refacto
r &

Rewrite

EAP + + + + + + +

Thorntail + + + + + + + + + +

Vert.x + + + + + + +

Node.js + + + + + +

Tomcat + Spring
Boot + + + + + Spring

Boot

Decision Points For Selecting The Runtimes

#RedHatOSD

Application Runtimes

LAUNCH SERVICE

Pre-configured Missions and Boosters
Integration with RH Developer, CI/CD tools, Security Services
Optimized for OpenShift / Kubernetes Services
Available Application Migration Toolkit
Python, Go and .Net also supported by Red Hat (with a different SLA)

Facilitate cloud native app
development ON THE HYBRID
CLOUD:

 ✓ Faster getting started

 ✓ Simplify container dev

 ✓ Automate DevOps

 ✓ Standardize tools/processes

 ✓ Fully supported JDK

JAVA WEB
JBOSS WS

JAVA EE
JBOSS EAP

JAVA SE
OPENJDK

SERVERLESS
CLOUD FUNCTIONS*

SPRING
SPRING BOOT

JAVASCRIPT
NODE.JS

DISTRIBUTED
DATA

DATA GRID

MESSAGING
AMQ BROKER

SSO

MICROPROFILE
THORNTAIL

REACTIVE
VERT.X

SECURITY

*Coming Soon#RedHatOSD

launch.openshift.io

#RedHatOSD

Openshift-DO (“odo”) is a new
CLI plugin for OpenShift 3.9+
that is tailored for developer
syntax and workflows.

Goal is to make it simple for a
developer to create an app, add
components (like a database)
and expose it without needing to
know Kubernetes.

In tech preview now.

Openshift-do: A Cli For Developers
> odo create wildfly backend
Component ‘backend’ was created.
To push source code to the component run ‘odo push’

> odo push
Pushing changes to component: backend

> odo storage create backend-store --path /data --size 100M
Added storage backend-store to backend

> odo create php frontend
Component ‘frontend’ was created.
To push source code to the component run ‘odo push’

> odo push
Pushing changes to component: frontend

> odo url create
frontend - http://frontend-myproject.192.168.99.100.nip.io

> odo watch
Waiting for something to change in /Users/tomas/odo/frontend

> odo create wildfly backend
Component ‘backend’ was created.
To push source code to the component run ‘odo push’

> odo push
Pushing changes to component: backend

> odo storage create backend-store --path /data --size 100M
Added storage backend-store to backend

> odo create php frontend
Component ‘frontend’ was created.
To push source code to the component run ‘odo push’

> odo push
Pushing changes to component: frontend

> odo url create
frontend - http://frontend-myproject.192.168.99.100.nip.io

> odo watch
Waiting for something to change in /Users/tomas/odo/frontend

#RedHatOSD

The books you’ll need to read

#RedHatOSD

GRAZIE PER L’ATTENZIONE
Ugo Landini - Solution Architect

Giuseppe Bonocore - Solution Architect

#RedHatOSD

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

